This function allows to export a Seurat object to visualize in Cerebro.
exportFromSeurat(
object,
assay = "RNA",
slot = "data",
file,
experiment_name,
organism,
groups,
cell_cycle = NULL,
nUMI = "nUMI",
nGene = "nGene",
add_all_meta_data = TRUE,
use_delayed_array = FALSE,
verbose = FALSE
)
Arguments
object |
Seurat object. |
assay |
Assay to pull expression values from; defaults to RNA . |
slot |
Slot to pull expression values from; defaults to data . It
is recommended to use sparse data (such as log-transformed or raw counts)
instead of dense data (such as the scaled slot) to avoid performance
bottlenecks in the Cerebro interface. |
file |
Where to save the output. |
experiment_name |
Experiment name. |
organism |
Organism, e.g. hg (human), mm (mouse), etc. |
groups |
Names of grouping variables in meta data
(object@meta.data ), e.g. c("sample","cluster") ; at least one
must be provided; defaults to NULL . |
cell_cycle |
Names of columns in meta data
(object@meta.data ) that contain cell cycle information, e.g.
c("Phase") ; defaults to NULL . |
nUMI |
Column in object@meta.data that contains information about
number of transcripts per cell; defaults to nUMI . |
nGene |
Column in object@meta.data that contains information
about number of expressed genes per cell; defaults to nGene . |
add_all_meta_data |
If set to TRUE , all further meta data columns
will be extracted as well. |
use_delayed_array |
When set to TRUE , the expression matrix will
be stored as an RleMatrix (see DelayedArray package). This can
be useful for very large data sets, as the matrix won't be loaded into memory
and instead values will be read from the disk directly, at the cost of
performance. Note that it is necessary to install the DelayedArray
package. If set to FALSE (default), the expression matrix will be
copied from the input object as is. It is recommended to use a sparse format,
such as dgCMatrix from the Matrix package. |
verbose |
Set this to TRUE if you want additional log messages;
defaults to FALSE . |
Value
No data returned.
Examples
#> [17:53:24] Initializing Cerebro object...
#> [17:53:24] Collecting available meta data...
#> [17:53:24] Extracting all meta data columns...
#> [17:53:24] Extracting dimensional reductions...
#> [17:53:24] Will export the following dimensional reductions: UMAP
#> [17:53:24] Extracting tables of marker genes...
#> [17:53:24] No trajectories to extract...
#> [17:53:24] Overview of Cerebro object:
#> class: Cerebro_v1.3
#> cerebroApp version: 1.3.1
#> experiment name: PBMC
#> organism: hg
#> date of analysis:
#> date of export: 2021-03-12
#> number of cells: 80
#> number of genes: 230
#> grouping variables (2): sample, seurat_clusters
#> cell cycle variables (0):
#> projections (1): UMAP
#> trees (0):
#> most expressed genes:
#> marker genes:
#> - cerebro_seurat (2): sample, seurat_clusters
#> enriched pathways:
#> trajectories:
#> extra material:
#> [17:53:24] Saving Cerebro object to: pbmc_Seurat.crb
#> [17:53:24] Done!